Wednesday 12 May 2010

NASA Studies How Spaceflight Affects Bacteria

NASA Studies How Spaceflight Affects Bacteria

MOFFETT FIELD, Calif. – Every day, each of us comes into contact with bacteria, just like the astronauts in space.

When space shuttle Atlantis launches, currently scheduled for May 14, 2010, it will carry an experiment to study how microgravity affects bacterial growth and the formation of surface films. Funded by NASA Ames Research Center, Moffett Field, Calif., a team of researchers from Rensselaer Polytechnic Institute (RPI), Troy, N.Y., will conduct the experiment.

“As astronauts are spending more time at the International Space Station and long-term spaceflight becomes closer to a reality, it is important to understand the long-term effects of bacteria on human beings and spacecraft materials, including those organisms and interactions that would likely be harmless on Earth,” said RPI Professor Cynthia Collins, who leads the team of scientists working on the experiment.

The study will focus on microbes, including bacteria that play an essential role in human health, from digestion to proper immune system function. Because of these important roles, maintaining a spacecraft and the ISS microbe free is neither possible nor desirable.

The community of microbes that live in the human body is not simply composed of organisms that are beneficial for human life, but also harbors many bacteria that are potentially capable of causing disease. “It is essential that we study microbes, their behavior in space, their role in biofilm formation, for example spacecraft surfaces, and ultimately their potential impact on the health of an astronaut,” said Collins.

The Micro-2 experiment will study how gravity alters biofilm formation with the goal of developing new strategies to reduce their impact on maintaining and operating spacecraft and crew health. Bacterial biofilms, complex three-dimensional microbial communities formed on many types of surfaces, were responsible for increasing corrosion and damaging a water purification system on the Mir space station.

Since astronauts have been shown to exhibit a decrease in immune system function during spaceflight, scientists want to study how bacteria, especially those that form biofilms, respond to microgravity. According to the team of scientists from RPI, the development of biofilms is of great concern because by forming biofilms, bacteria increase their resistance to antibiotics, thereby enhancing their chances of survival in hostile environments and becoming more infectious and dangerous to human health.

Biofilms routinely grow large enough to be affected by gravity. “Growing biofilms in microgravity will provide tremendous insight into how gravitational forces acting on biofilms can lead to changes in processes occurring at a cellular level,” says RPI Professor Joel Plawsky, a project co-investigator.

The Micro-2 experiment also will test new nanotechnology-based coatings that have the potential to decrease biofilm growth. “Using defense mechanisms found in nature, we have ‘packaged’ highly efficient bactericidal activity into functional surface coatings. These surfaces do not cause toxic agents to be released, thereby providing a surface that is safe to humans but effective in destroying pathogenic bacteria”, explained RPI Professor Jonathan Dordick, co-investigator.

The Micro-2 experiment uses BioServe Space Technologies flight-certified hardware. There will be 16 Group Activation Packs onboard space shuttle Atlantis and a control group consisting of 16 packs on the ground at NASA’s Kennedy Space Center in Florida. Each will be activated to enable the bacteria to grow and subsequently be preserved for post-flight processing upon the space shuttle’s return.

The Micro-2 experiment is managed and funded by the ISS Non-Exploration Research Projects Office located at NASA Ames Research Center.

For more information on the Micro-2 experiment, visit:

For more information about the Rensselaer Polytechnic Institute, visit:

For more information about NASA Ames visit:


No comments: